Recognizing Unseen Actions Across Cameras by Exploring the Correlated Subspace

نویسندگان

  • Chun-Hao Huang
  • Yi-Ren Yeh
  • Yu-Chiang Frank Wang
چکیده

We present a novel transfer learning approach to cross-camera action recognition. Inspired by canonical correlation analysis (CCA), we first extract the spatio-temporal visual words from videos captured at different views, and derive a correlation subspace as a joint representation for different bag-of-words models at different views. Different from prior CCA-based approaches which simply train standard classifiers such as SVM in the resulting subspace, we explore the domain transfer ability of CCA in the correlation subspace, in which each dimension has a different capability in correlating source and target data. In our work, we propose a novel SVM with a correlation regularizer which incorporates such ability into the design of the SVM. Experiments on the IXMAS dataset verify the effectiveness of our method, which is shown to outperform state-of-the-art transfer learning approaches without taking such domain transfer ability into consideration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recognizing Actions across Cameras by Exploring the Correlated Subspace

We present a novel transfer learning approach to cross-camera action recognition. Inspired by canonical correlation analysis (CCA), we first extract the spatio-temporal visual words from videos captured at different views, and derive a correlation subspace as a joint representation for different bag-of-words models at different views. Different from prior CCA-based approaches which simply train...

متن کامل

Action Recognition in the Presence of One Egocentric and Multiple Static Cameras

In this paper, we study the problem of recognizing human actions in the presence of a single egocentric camera and multiple static cameras. Some actions are better presented in static cameras, where the whole body of an actor and the context of actions are visible. Some other actions are better recognized in egocentric cameras, where subtle movements of hands and complex object interactions are...

متن کامل

Acoustic correlated sources direction finding in the presence of unknown spatial correlation noise

In this paper, a new method is proposed for DOA estimation of correlated acoustic signals, in the presence of unknown spatial correlation noise. By generating a matrix from the signal subspace with the Hankel-SVD method, the correlated resource information is extracted from each eigen-vector. Then a joint-diagonalization  structure is constructed of the signal subspace and basis it, independent...

متن کامل

Person re-identification with fusion of hand-crafted and deep pose-based body region features

Person re-identification (re-ID) aims to accurately retrieve a person from a large-scale database of images captured across multiple cameras. Existing works learn deep representations using a large training subset of unique persons. However, identifying unseen persons is critical for a good re-ID algorithm. Moreover, the misalignment between person crops to detection errors or pose variations l...

متن کامل

A Modfied Self-organizing Map Neural Network to Recognize Multi-font Printed Persian Numerals (RESEARCH NOTE)

This paper proposes a new method to distinguish the printed digits, regardless of font and size, using neural networks.Unlike our proposed method, existing neural network based techniques are only able to recognize the trained fonts. These methods need a large database containing digits in various fonts. New fonts are often introduced to the public, which may not be truly recognized by the Opti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012